Glutamic Acid
Phân loại:
Thành phần khác
Mô tả:
Acid glutamic là gì?
Acid glutamic là một trong 20 Acid amin có sẵn trong Protein của động vật và thực vật. Đây cũng là thành phần chính của bột ngọt (MSG), một muối của Acid glutamic.
Ngoài ra, Acid glutamic còn đảm nhiệm chức năng tổng hợp các Acid amin khác nhau như Alanin, Leucine và chiếm phần lớn thành phần Protein và phần xám của vỏ não. Trong cơ thể Acid glutamic chuyển thành Glutamate, một chất hóa học giúp các tế bào thần kinh trong não gửi và nhận thông tin từ các tế bào khác. có thể giúp những người bị Hypochlorhydria (Acid dạ dày thấp) hoặc Achlorhydria (giảm tiết Acid dạ dày).
Do đó, Acid glutamic có vai trò quan trọng trong quá trình chuyển hóa Carbohydrate, xây dựng cấu trúc Protein, xây dựng các cấu trúc tế bào của con người cũng như trong các biến đổi sinh hóa ở hệ thần kinh trung ương.
Đặc biệt, trong lĩnh vực làm đẹp, Acid glutamic được sử dụng trong các sản phẩm chăm sóc tóc, sản phẩm chăm sóc cơ thể và các sản phẩm chống lão hóa. Acid glutamic rất hữu ích trong việc duy trì giá trị pH cho da. Acid glutamic giúp liên kết phân tử nước trong da, từ đó dưỡng ẩm cho da và giúp da duy trì sự cân bằng độ ẩm. Thành phần còn giữ vai trò như một chất ổn định sản phẩm, ngăn nhũ tương không bị phá vỡ. Acid glutamic cũng tạo thành một lớp màng bao quanh sợi tóc và bảo vệ tóc khỏi tác hại từ bên ngoài.
Điều chế sản xuất
Acid glutamic là sản phẩm của quá trình thủy phân Protein. Glutamine có trong Protein được chuyển thành Acid glutamic khi một protein bị thủy phân.
Lần đầu tiên được phân lập vào năm 1865, Acid glutamic là một chất trung gian chuyển hóa quan trọng và là một trong các Acid amin không thiết yếu vì cơ thể có thể tổng hợp từ Acid oxoglutaric (được hình thành trong quá trình chuyển hóa Carbohydrate) mà không cần nguồn thực phẩm.
Cơ chế hoạt động
Acid glutamic tự do không thể vượt qua hàng rào máu não với số lượng đáng kể. Thay vào đó, Acid glutamic được chuyển đổi thành L-glutamine mà não sử dụng để tổng hợp nhiên liệu và Protein. Người ta phỏng đoán rằng Glutamate có trong Protein liên quan đến các chức năng nhận thức như học tập và ghi nhớ trong não, mặc dù lượng Glutamate quá nhiều có thể gây ra tổn thương tế bào thần kinh liên quan đến các bệnh như xơ cứng teo cơ, bệnh Lathyrism và bệnh Alzheimer. Ngoài ra, thuốc Phencyclidine (thường được gọi là PCP) đối kháng với Glutamate tại thụ thể NMDA, gây ra hành vi tương tự bệnh tâm thần phân liệt.
Dược động học:
Dược lực học:
Xem thêm
Insulin Pork là gì?
Insulin là hormone từ các tế bào đảo tụy ở tuyến tụy tiết ra. Insulin được tạo ra bằng cách phân lập tuyến tụy của động vật như bò và lợn từ những năm 1920-1980. Insulin người và lợn có sự khác biệt trong thành phần amino acid. Khi dùng insulin có nguồn gốc từ lợn đã gây ra một số tác dụng phụ. Quá trình sản xuất và làm tinh khiết insulin giai đoạn đó còn gặp nhiều khó khăn.
Công ty Genetech (Hoa Kỳ) đã sản xuất insulin bằng kỹ thuật di truyền đầu tiên vào năm 1982. Đây là lần đầu tiên các nhà nghiên cứu ứng dụng công nghệ sinh học vào dược phẩm thành công và sản phẩm được đưa ra thị trường.
Insulin chuyển hóa các chất carbohydrate trong cơ thể, insulin tác dụng đến việc chuyển hóa gan và các mô mỡ thành năng lượng ATP cung cấp cho hoạt động cơ thể. Insulin tổng hợp ở tế bào beta trong đảo tụy từ bộ máy tổng hợp protein trong tế bào, và có thể làm giảm nồng độ glucose trong máu.
Điều chế sản xuất
Các nhà nghiên cứu lần đầu tiên đã ứng dụng công nghệ sinh học vào dược phẩm thành công là năm 1982. Sản phẩm insulin là của Công ty Genetech được sản xuất bằng kỹ thuật di truyền đầu tiên.
Người ta dùng kỹ thuật tái tổ hợp AND chuyển gen mã hóa insulin vào tế bào vi khuẩn, E.coli sẽ sinh tổng hợp tạo ra loại peptit khi được nuôi cấy trong môi trường thích hợp.
Sản xuất theo quy trình sau: Cần chuẩn bị đoạn oligonucleotide mã hóa cho insulin: Theo trình tự cấu trúc các amino acid của insulin, có 2 chuỗi polypeptid A và B nối với nhau bằng hai cầu disulfur và 51 amino acid. Người ta đã mã hoá cho hai chuỗi A, B và tạo dòng gen tách biệt.
Phương pháp dùng plasmid của vi khuẩn hay nấm men, bằng enzyme hạn chế cắt plasmid. Nối đoạn gen mã hóa cho insulin tạo vector tái tổ hợp (pBR322), chuyển vector pBR322 vào vi khuẩn E.coli.
Vi khuẩn E.coli được lên men ở môi trường phù hợp, tách chiết thu được sản phẩm là polypeptid A và B. Trộn hai loại peptid bằng phương pháp hóa học enzym để xử lý để tạo cầu disulfur.
Cơ chế hoạt động
Insulin cần được gắn vào tế bào đích thông qua thụ cảm thể (receptor) của insulin trên bề mặt tế bào để phát huy tác dụng.
L-Threonine là gì?
L-Threonin là một α-amino axit có công thức hóa học HO₂CCHCHCH₃, đồng thời cũng là một axit amin thiết yếu có phân cực. Threonin là một trong hai axit amin sinh protein mang một nhóm ancol, giống như serin, là một trong hai axit amin thiết yếu có nhánh bên đối xứng.
L-Threonine là một axit amin thiết yếu nhưng axit amin này có thể sử dụng để tạo ra protein. Các axit amin thiết yếu phải được lấy từ thực phẩm thông qua chế độ ăn uống, cơ thể không thể tự tạo ra được.
L-threonine được mọi người sử dụng khi bị rối loạn kiểm soát cơ bắp, độ căng cơ, yếu và cứng cơ ở chân, bệnh xơ cứng teo cơ bên hoặc ALS (Lou Gehrig). Còn một số hạn chế là các bằng chứng khoa học về những công dụng này vẫn chưa được khẳng định chắc chắn.
Điều chế sản xuất L-Threonine
Các nhà sản xuất axit amin thường được phát triển bằng cách gây đột biến ngẫu nhiên, lặp đi lặp lại do khó khăn trong việc thiết kế hợp lý mạng lưới trao đổi chất phức tạp và được điều chỉnh cao. Ở đây, chúng tôi báo cáo sự phát triển của chủng Escherichia coli sản sinh quá mức L -threonine đã được xác định về mặt di truyền bằng kỹ thuật chuyển hóa hệ thống. Sự ức chế phản hồi của aspartokinase I và III (được mã hóa bởi thrA và lysC, tương ứng) và các quy định về suy giảm phiên mã (nằm trong thrL) đã bị loại bỏ.
Các con đường cho sự suy thoái Thr đã bị loại bỏ bằng cách xóa tdh và làm biến đổi ilvA. Các meta và Lysagen đã bị xóa để tạo ra nhiều tiền chất hơn cho quá trình sinh tổng hợp Thr. Các gen mục tiêu khác sẽ được thiết kế đã được xác định bằng cách lập hồ sơ phiên mã kết hợp với phân tích phản ứng thông lượng silico, và mức độ biểu hiện của chúng được điều chỉnh theo đó.
Chủng E. coli được biến đổi gen cuối cùng có thể tạo ra Thr với năng suất cao là 0,393g mỗi gam glucoza, và 82,4g/l Thr bằng cách nuôi cấy theo mẻ. Chiến lược kỹ thuật chuyển hóa hệ thống được báo cáo ở đây có thể được sử dụng rộng rãi để phát triển các sinh vật được xác định về mặt di truyền nhằm sản xuất hiệu quả các sản phẩm sinh học khác nhau.
Cơ chế hoạt động của L-Threonine
L-Threonine khi vào cơ thể, được cơ thể biến đổi thành một hóa chất gọi là glycine. Hoạt chất glycine hoạt động trong não, để điều tiết sự co thắt cơ bắp không mong muốn.
Caprylic/Capric Triglyceride là gì?
Caprylic/Caprylic triglyceride là một thành phần được sử dụng phổ biến trong mỹ phẩm và xà phòng. Nó là sản phẩm từ sự kết hợp dầu dừa và glycerin.
Có thể thay thế tự nhiên cho các chất làm mềm và chất tăng cường kết cấu khác nên Caprylic/Caprylic triglyceride thường được nhà sản xuất dùng trong ngành công nghiệp mỹ phẩm sạch.
Caprylic/Capric Triglycerides cũng có tác dụng của một chất chống oxy hóa nên được ứng dụng làm chất bảo quản trong một số sản phẩm nhằm giúp kéo dài thời gian sử dụng của sản phẩm. Do đó, từ lâu chất này đã trở thành chọn lựa hoàn hảo để thay thế cho những chất bảo quản khác.
Trừ những người đã được xác định dị ứng với Caprylic/Caprylic triglyceride, còn lại thì thành phần này phù hợp với tất cả mọi người.
Điều chế sản xuất Caprylic/Capric Triglyceride
Để chiết xuất Caprylic/Caprylic triglyceride, người ta thực hiện qua hai bước. Bước thứ nhất dùng phương pháp xà phòng hóa (tức là dùng xà phòng) để tách nhóm glycerol khỏi các axit béo. Nhóm glycerol này tiếp tục phản ứng lại với các axit béo khác để tạo ra một hợp chất mới mà chúng ta gọi là xà phòng.
Ngoài ra, còn có thể tách glycerol khỏi các axit béo thông qua quá trình thủy phân hơi nước: Sử dụng nhiệt độ và áp suất mạnh để phá vỡ phân tử triglyceride.
Bước thứ hai là trải qua quá trình este hóa để hình thành được dầu tinh khiết chứa caprylic từ xà phòng, phải để tách hẳn glycerol ra khỏi toàn bộ axit béo như axit lauric (49%), axit myristic (18%), axit palmitic (8%), axit caprylic (8%), axit capric ( 7%), axit oleic (6%), axit linoleic (2%) và axit stearic (2%).
Tóm lại, quá trình thu Caprylic (Capric Triglyceride) chính là việc tách nhập nhiều lần axit béo với nhóm glycerol rồi cuối cùng trải qua quá trình este hóa.
Marigold là gì?
Cúc vạn thọ là loại cây thảo mọc đứng, cao 0,6-1m, phân nhánh thành bụi có cành nằm trải ra. Lá cúc vạn thọ xẻ sâu hình lông chim, các thuỳ hẹp, dài, nhọn, khía răng cưa. Đầu hoa toả tròn, rộng 3 - 4cm hay hơn, mọc đơn độc hay tụ họp thành ngù; lá bắc của bao chung hàn liền với nhau; hoa màu vàng hay vàng cam, màu lông gồm 6 - 7 vẩy rời nhau hoặc hàn liền nhau. Hoa ở phía ngoài hình lưỡi nhỏ xoè ra, hoa ở phía trong hình ống và nhỏ.
Quả bế có 1 - 2 vẩy ngắn., cây ra hoa vào mùa đông cho tới mùa hạ. Calendula officinalis (Cúc vạn thọ) thuộc họ thực vật có tên Asteraceae hay Compositae. Những cánh hoa nhỏ được thu hoạch và làm khô vì nhiều tính chất dùng để làm thuốc. Mặc dù có rất nhiều loài hoa cúc vàng (marigold flowers) được trồng trên khắp thế giới, nhưng Calendula (cúc vạn thọ) được dùng để làm thuốc nhiều nhất. Nó có nguồn gốc ở Ai Cập và một phần của Địa Trung Hải nhưng bây giờ đã phát triển ở mọi châu lục, thường nở trong những tháng nóng của năm (từ tháng 5 đến tháng 10 ở Bắc bán cầu).
Một số nghiên cứu chỉ ra rằng tinh chất hoa cúc vàng (marigold flowers extract) chứa nhiều thành phần hoạt tính, bao gồm các chất chống oxy hoá và dầu dễ bay hơi. Cúc vạn thọ chứa chất chống oxy hóa dưới dạng flavonoid và carotenoids. Ở cánh hoa có nhiều chất chống oxy hóa và các axit béo như axit calendric và axit linoleic. Ở lá của cúc vạn thọ chứa lutein và beta-carotene, có chức năng chống oxy hóa mạnh mẽ.
Điều chế sản xuất
Một số nghiên cứu đã phát triển nhũ tương dầu/nước, sử dụng dầu Cúc vạn thọ (Calendula officinalis L) và rượu béo etoxyl hóa làm chất hoạt động bề mặt. Giá trị HLB cần thiết cho dầu cúc vạn thọ được xác định là 6,0. Các chất hoạt động bề mặt được liên kết trong các cặp ưa béo/ưa nước. Các chất hoạt động bề mặt ưa béo là Ceteth ‐ 2 và Steareth ‐ 2 và các chất hoạt động bề mặt ưa nước là Steareth ‐ 20, Ceteareth ‐ 20, Ceteareth ‐ 5 và Ceteth ‐ 10. Để xác định các pha tinh thể lỏng, các nhũ tương được phân tích bằng kính hiển vi ánh sáng phân cực. Độ ổn định vật lý được đánh giá bằng phương pháp lưu biến và phân tích tiềm năng zeta. Tất cả các nhũ tương đều có cấu trúc tinh thể lỏng dạng phiến. Kết quả cho thấy loại chất hoạt động bề mặt này có thể tạo ra tinh thể lỏng trong hệ thống, với sự khác biệt nhỏ về bề ngoài, ảnh hưởng đến độ ổn định vật lý, theo các phương pháp đã áp dụng.
Việc phân lập được thực hiện bằng cách chiết xuất dung môi tuần tự của T. patula những bông hoa. Một mẫu gồm 600g nguyên liệu thực vật đã được nghiền thành bột khô được chiết bằng 1,2-dichloroethane trong thiết bị Soxhlet trong 48 giờ cho đến khi mất màu. Phần còn lại sau quá trình chiết tách dichloroethane được tái chiết xuất bằng etanol (tỷ lệ dung môi/chất thực vật 1: 5) để phân lập các hợp chất có độ phân cực cao hơn.
Các dung môi được làm bay hơi trong chân không ở 40°C để tạo ra chất chiết thô dicloroetan và etanol. Tiếp tục tách các hợp chất riêng lẻ khỏi dịch chiết dicloetan được thực hiện bằng sắc ký cột trên cột silica gel với hệ dung môi cloroform-hexan. Quá trình rửa giải các phân đoạn từ cột được bắt đầu bằng hexan với sự gia tăng thêm hàm lượng cloroform trong hệ thống. Sự rửa giải với 3% cloroform trong hexan cho hợp chất 1. Hợp chất 2 có trong phần được rửa giải từ cột với 5% cloroform trong hexan.
Dịch chiết etanol được tách trên cột silica gel bằng cách rửa giải với dicloroetan/metanol bằng phương pháp sắc ký lớp mỏng (TLC) để xác định đặc điểm sơ bộ của các phân đoạn. Quá trình rửa giải được bắt đầu với dichloroethane với sự gia tăng từng bước sau đó của hàm lượng metanol trong hệ thống.
Rửa giải với metanol 2, 3, 5, 7 và 10% trong dicloroetan tạo ra các phần tương ứng là 1, 2, 3, 4 và 5. Sắc ký lại của phân đoạn 2 trên cột Sephadex LH-20 với metanol 2% trong cloroform với sự tách TLC tiếp tục tạo ra hợp chất 2 cũng được tìm thấy trong dịch chiết dicloetan. Hợp chất 3 thu được bằng cách sắc ký lại phân đoạn 5 trên cột silica gel được rửa giải bằng metanol 8% trong cloroform và tiếp tục được tinh chế trên cột polyamit bằng cách rửa giải bằng etanol trong nước.
Quá trình phân tách TLC được thực hiện bằng các tấm silica gel Merck (Đức). Tách các hợp chất ưa béo được thực hiện trong hệ dung môi của dichloroethane-methanol (9: 1) và chloroform-methanol (9: 1). Các hợp chất phân cực hơn từ chiết xuất etanol được tách ra trong hệ dung môi của cloroform/metanol/nước (26: 14: 3).
Các sắc ký đồ được kiểm tra dưới ánh sáng UV ở bước sóng 254 và 360 nm, trước và sau khi sử dụng thuốc thử nhuộm để phát hiện flavonoid. Các flavonoid được phát hiện dưới dạng các đốm vàng lộ ra sau khi nung nóng các tấm được phun bằng dung dịch nhôm clorua etanol 1%. Các hợp chất khác được phát hiện bằng cách phun các dung dịch axit sunfuric 20%. Sau khi nung nóng các tấm phun đến 100°C, các hợp chất được tiết lộ dưới dạng các đốm có sắc thái từ xanh lam đến xanh lục, tùy thuộc vào các hợp chất cụ thể.
Cơ chế hoạt động
Cúc vạn thọ Pháp (Tagetes patula L.) được sử dụng rộng rãi trong y học dân gian, đặc biệt để điều trị các rối loạn liên quan đến viêm. Tuy nhiên, cơ chế tế bào của hoạt động này cần được nghiên cứu thêm. Trong một số nghiên cứu tiềm năng của các hợp chất T. patula để làm giảm bớt căng thẳng oxy hóa trong các tế bào T lymphoblastoid Jurkat ở người bị thách thức với hydrogen peroxide. Chiết xuất thô của hoa cúc vạn thọ và các phân đoạn tinh khiết có chứa flavonoid patuletin, quercetagetin và quercetin và các dẫn xuất của chúng, cũng như carotenoid lutein, được đưa tiếp xúc với các tế bào Jurkat được thử thách với 25 hoặc 50 μ M H 2 O 2.
Hydrogen peroxide gây ra stress oxy hóa trong tế bào, biểu hiện là tạo ra các gốc superoxide và peroxyl, giảm khả năng tồn tại, chu kỳ tế bào bị bắt và tăng cường quá trình chết rụng. Sự căng thẳng đã được giảm bớt nhờ các thành phần cúc vạn thọ thể hiện khả năng loại bỏ gốc rễ cao và tăng cường hoạt động của các enzym chống oxy hóa liên quan đến việc trung hòa các loại oxy phản ứng.
Phần flavonoid giàu quercetin và quercetagetin cho thấy hoạt tính bảo vệ tế bào cao nhất, trong khi patuletin ở liều cao có tác dụng gây độc tế bào liên quan đến khả năng chống ung thư của nó. T. patulacác hợp chất tăng cường sản xuất interleukin-10 (IL-10) chống viêm và chống oxy hóa trong tế bào Jurkat. Cả khả năng loại bỏ gốc rễ trực tiếp và kích thích các cơ chế bảo vệ tế bào có thể làm nền tảng cho các đặc tính chống viêm của hoa cúc vạn thọ.
Chiết xuất ethanol từ hoa Calendula officinalis L. thể hiện tác dụng chống viêm thông qua việc ức chế các cytokine gây viêm (IL-1β, IL-6, TNF-α và IFN-γ), và nó đã được đề xuất để ức chế COX-2 thông qua ức chế gen enzym và tổng hợp prostaglandin sau đó.
Ascorbyl Tetraisopalmitate là gì?
Ascorbyl tetraisopalmitate (ATIP hoặc VC-IP có thương hiệu) là tetraester của axit ascorbic và axit isopalmitic. nó là một dẫn xuất vitamin C tan trong dầu, ổn định, đã được chứng minh lâm sàng, cung cấp khả năng hấp thụ qua da vượt trội và chuyển đổi hiệu quả thành vitamin C tự do trong da.
Thành phần đa chức năng này ức chế hoạt động của tyrosinase nội bào và tạo hắc tố để làm sáng, giảm tổn thương tế bào + DNA do tia UV gây ra, cung cấp chức năng chống oxy hóa mạnh và tăng cường tổng hợp collagen.Cấu trúc hóa học của Ascorbyl tetraisopalmitate có các cánh tay uốn cong tăng tính thấm qua da. Nó cho thấy hiệu quả ấn tượng ngay cả ở mức sử dụng thấp.

Ascorbyl Tetraisopalmitate là một dạng Vitamin C
Điều chế sản xuất Ascorbyl Tetraisopalmitate
Ascorbyl Tetraisopalmitate là dạng Vitamin C mới nhất, được tạo ra bằng cách trộn Vitamin C với Axit Isopalmitic.
Cơ chế hoạt động
Ascorbyl tetraisopalmitate là một dẫn xuất tan trong dầu, vì vậy nó thẩm thấu vào da nhanh hơn nhiều so với các dạng khác.
Giống như các dạng khác của Vitamin C, nó giúp ngăn ngừa lão hóa tế bào bằng cách ức chế liên kết chéo của collagen, quá trình oxy hóa protein và quá trình peroxy hóa lipid. Nó cũng hoạt động hiệp đồng với Vitamin E chống oxy hóa, và đã chứng minh sự ổn định và hấp thụ qua da vượt trội.
Không giống như axit L-Ascorbic, Ascorbyl Tetraisopalmitate sẽ không tẩy tế bào chết hoặc gây kích ứng da. Nó được dung nạp tốt bởi ngay cả những loại da nhạy cảm nhất. Ascorbyl tetraisopalmitate tồn tại trong tế bào da lâu hơn axit l-ascorbic từ bốn mươi đến tám mươi lần và sẽ có tác dụng gấp bốn lần.Cho phép hấp thụ qua da nhanh hơn các dạng khác của vitamin C3 — tế bào hấp thụ nồng độ ATIP gấp 10 lần so với axit l-ascorbic.
Beta-Alanine là gì?
Beta-Alanine là một loại axit amin không thiết yếu của cơ thể, được dùng bổ sung nhằm làm tăng hiệu suất tập trong tập luyện thể thao, thể hình. Beta-alanine có khả năng tăng sức bền, sức mạnh cũng như làm giảm cảm giác mệt mỏi trong tập luyện.
Cơ thể không thể dùng Beta-Alanine để tổng hợp protein mà dùng chất này kết hợp cùng với histidine tạo ra carnosine - chất được lưu trữ trong cơ xương giúp cải thiện năng suất hoạt động người tập luyện, tăng sức bền. Nghiên cứu chứng minh nếu bổ sung Beta-Alanine sẽ làm tăng nồng độ carnosine trong cơ lên 80%. Carnosine đóng vai trò là chất đệm chống lại axit, làm giảm độ axit trong cơ bắp khi tập thể dục trong thời gian dài với cường độ cao.
Công thức hóa học của Beta-Alanine.
Nghiên cứu cho thấy, một người bổ sung Beta-Alanine trong 6 tuần sẽ làm tăng thời gian tới mức kiệt sức từ 1,168-1,387 giây trong các bài tập cường độ cao. Một nghiên cứu khác cũng cho thấy rằng, 18 người chèo thuyền được bổ sung chất Beta-Alanine trong 7 tuần có hiệu suất hoạt động nhanh hơn 4.3 giây so với nhóm dùng giả dược trong cuộc đua dài 2,000m diễn ra trong 6 phút.
Beta-Alanine được tìm thấy trong các nguồn thực phẩm tự nhiên bao gồm các loại thịt đỏ, thịt gia cầm, các loại cá… Đó là lý do vì sao lượng carnosine trong cơ bắp ở những người theo chế độ ăn chay ít hơn 50% so với người ăn mặn. May mắn là ngày nay Beta-Alanine đã được tổng hợp dưới dạng thực phẩm bổ sung, phù hợp dùng cho những người có thói quen tập luyện thể hình – gym ở cường độ cao.
Beta–Alanine được bào chế cả ở dạng bột và viên nang nén mềm. Liều lượng bổ sung khuyến khích của chất này là từ 2–5g/ngày, nên uống trong bữa ăn để làm tăng mức độ carnosine cao hơn. Bên cạnh đó, có thể kết hợp Beta-Alanine với các loại thực phẩm bổ sung khác, bao gồm natri bicarbonate và creatine để đạt hiệu quả tốt nhất.
Nghiên cứu sự kết hợp Beta-Alanine và natri bicarbonate cho thấy một số lợi ích mang lại trong các bài tập, bao gồm nhiễm toan cơ bắp ức chế hiệu suất. Trong khi đó, khi kết hợp Beta-Alanine với creatine sẽ giúp tăng hiệu suất tập thể dục cường độ cao bằng cách tăng tính khả dụng ATP. Beta-Alanine cùng creatine mang lại lợi ích cho hiệu suất tập thể dục, sức mạnh và khối lượng cơ nạc.
Beta-Alanine được tìm thấy trong các nguồn thực phẩm hàng ngày như thịt đỏ, thịt gia cầm và các loại cá,…
Cơ chế hoạt động của Beta-Alanine
Lượng Histidine trong cơ bắp mỗi người chúng ta cao hơn Beta-Alanine nên không tạo ra nhiều carnosine, dẫn đến việc giảm thời gian tập luyện, người tập cũng mau mệt hơn. Trong khi đó, nếu bổ sung thực phẩm chứa Beta-Alanine sẽ giúp cơ thể dễ tổng hợp chất, từ đó tăng hiệu suất tập luyện giúp người tập khỏe hơn.
Beta-Alanine trong cơ thể hoạt động như sau:
-
Đầu tiên, phân tử glucose sẽ bị phá hủy ra để tạo nguồn năng lượng chính cho việc tập luyện.
-
Kế tiếp, lactate được sinh ra từ quá trình phá vỡ glucose của cơ bắp tạo thành các axit lactic. Axit lactic sau đó chuyển hóa thành lactate gọi là ion hydro (H+).
-
Lượng axit lúc này tăng lên cao hơn, giảm phân tách glucose là nguyên nhân làm cơ bắp bị mệt, khả năng co duỗi của cơ bắp bị cản trở khiến người tập gặp khó khăn khi nâng tạ.
-
Bổ sung Beta-Alanine sẽ thúc đẩy cơ thể tạo ra nhiều carrnosise làm giảm lượng axit lactic, từ đó cơ bắp sẽ lâu thấy mệt hơn.
Butylene Glycol là gì?
Trong các sản phẩm mỹ phẩm, Butylene glycol là một chất lỏng có vai trò giữ độ ẩm và làm dung môi. Butylene glycol sẽ giúp cho kem thấm vào da nhanh hơn, đồng thời cũng giúp làm giảm đáng kể độ nhờn rít trên da sau khi sử dụng.
Butylene glycol có mặt trong công thức nhiều sản phẩm chăm sóc cá nhân, bao gồm dầu gội, dầu xả, kem dưỡng da, mỹ phẩm và nhiều loại khác. Tuy nhiên, Butylene glycol đặc biệt được ưu tiên dùng trong các sản phẩm dạng gel và trang điểm giúp lướt nhẹ nhàng trên khuôn mặt.
Có thể nói, Butylene Glycol là thành phần quan trọng trong công thức mỹ phẩm nhờ tác dụng làm giảm độ nhớt, giúp các thành phần trong sản phẩm có thể dính vào nhau, từ đó các sản phẩm trang điểm và chăm sóc da cũng trở nên lỏng và đồng đều hơn. Ngoài ra, Butylene Glycol cũng được dùng như một chất dưỡng giúp thêm một lớp mềm mại hoặc cải thiện kết cấu cho tóc/da.
Điều chế sản xuất Butylene Glycol
Butylene glycol là một thành phần phổ biến trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, được sử dụng để giữ ẩm, giúp các thành phần không bị vón cục.
Butylene Glycol thường được sản xuất từ nhiên liệu hóa thạch bằng cách sử dụng acetaldehyde, có nguồn gốc từ dầu mỏ và là một chất có thể gây ung thư. Các phương pháp tổng hợp thông thường cũng sử dụng các chất xúc tác kim loại nặng nguy hại cho môi trường và yêu cầu nhiều bước phản ứng, làm tăng chất thải từ quy trình.
Sau đó, công ty Genomatica đã phát triển một phương pháp sản xuất butylene glycol từ quá trình lên men bởi E. coli bằng cách sử dụng đường tái tạo trong quy trình sản xuất một bước. Phương pháp sản xuất này loại bỏ nhu cầu về kim loại nặng và nguyên liệu dầu mỏ như acetaldehyde được sử dụng trong tổng hợp Butylene Glycol thông thường.
Cơ chế hoạt động của Butylene Glycol
Trong sản phẩm, Butylene Glycol hoạt động để thúc đẩy tăng cường khả năng xâm nhập của những thành phần khác. Vì các hoạt chất có trong kem dưỡng thường có kích thước phân tử lớn nên khó có thể thẩm thấu qua da. Trên thực tế, những thành phần có thể thấm qua da rất ít, còn phần lớn thành phần đều tích tụ trên bề mặt. Điều này không hề tốt đối với sự phát triển của da. Butylene Glycol đóng vai trò quan trọng khi giúp tăng cường sự xâm nhập vào da của các thành phần, từ đó nâng hiệu quả tổng thể của sản phẩm lên đáng kể.
Không dừng lại đó, Butylene Glycol còn có khả năng tạo độ mỏng cần thiết cho texture. Nếu bạn bôi lớp kem quá dày sẽ khiến da dễ bị bóng nhờn, gây cảm giác khó chịu. Butylene Glycol được thêm vào trong công thức để giúp khắc phục điều này, giúp da có được cảm giác thoải mái hơn. Mặt khác, Butylene Glycol cũng giúp làm giảm thời gian thẩm thấu của lớp kem trên da, tiết kiệm thời gian hiệu quả.
Ở vai trò là một dung môi, Butylene Glycol hoạt động làm cho những thành phần khác trong công thức được trộn vào nhau đều hơn, kết cấu sản phẩm nhờ đó cũng đồng nhất hơn.
Đặc biệt, Butylene Glycol còn có đặc tính dưỡng ẩm khi có thể hút độ ẩm từ không khí để cung cấp cho da. Điều này sẽ tăng cường khả năng hydrat hiệu quả ở các tế bào da. Chưa dừng lại ở đó, Butylene Glycol còn giúp hạn chế hiệu quả nếp nhăn hình thành trên da.
Adenine là gì?
Adenine là một nucleobase (một dẫn xuất purine). Nó là một trong bốn nucleobase trong axit nucleic của DNA được biểu thị bằng các chữ cái G – C – A – T. Ba chất khác là guanine, cytosine và thymine. Các dẫn xuất của nó có nhiều vai trò khác nhau trong sinh hóa bao gồm hô hấp tế bào, ở dạng cả adenosine triphosphate (ATP) giàu năng lượng và các đồng yếu tố nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) và Coenzyme A.
Adenine có công thức hóa học là C5H5N5 và cấu trúc là một vòng cacbon-nitơ kép. Nó là một purine, vì vậy nó được tạo thành từ một vòng năm cạnh và một vòng sáu cạnh, mỗi vòng chứa nitơ, được hợp nhất với nhau. Phân tử adenin có thể được phân biệt với các nhân purin khác bằng nhóm amin gắn với cacbon của chúng ở vị trí 6. Ngoài ra còn có một nhóm hydro gắn với nitơ ở vị trí 9.

Adenine có công thức hóa học là C5H5N5
Nó cũng có có chức năng tổng hợp protein và là thành phần hóa học của DNA và RNA. Hình dạng của adenine bổ sung cho thymine trong DNA hoặc uracil trong RNA.
Điều chế sản xuất
Sự chuyển hóa purine liên quan đến sự hình thành của adenine và guanine. Cả adenine và guanine đều có nguồn gốc từ nucleotide inosine monophosphate (IMP), lần lượt được tổng hợp từ một ribose phosphate có sẵn từ trước thông qua một con đường phức tạp sử dụng các nguyên tử từ axit amin glycine, glutamine và axit aspartic, cũng như coenzyme tetrahydrofolat.
Phương pháp sản xuất adenine ở quy mô công nghiệp được công nhận hiện nay là một dạng sửa đổi của phương pháp formamide. Phương pháp này làm nóng formamide trong điều kiện 120 độ C trong bình kín trong 5 giờ để tạo thành adenin. Phản ứng được tăng lên nhiều về số lượng bằng cách sử dụng phốtpho oxyclorua (photphoryl clorua) hoặc photpho pentachlorua làm chất xúc tác axit và điều kiện ánh sáng mặt trời hoặc tia cực tím.
Sau khi 5 giờ trôi qua và dung dịch formamide-phospho oxychloride-adenine nguội bớt, nước được đưa vào bình có chứa formamide và bây giờ là adenine đã tạo thành.
Cơ chế hoạt động
Adenine tạo thành adenosine, một nucleoside, khi gắn vào ribose, và deoxyadenosine khi gắn vào deoxyribose, và nó tạo thành adenosine triphosphate (ATP), thúc đẩy nhiều quá trình trao đổi chất tế bào bằng cách truyền năng lượng hóa học giữa các phản ứng.
Avocado oil là gì?
Avocado oil (hay dầu bơ) là loại dầu được ép từ quả bơ (không bao gồm hạt). Dầu bơ được sử dụng tương đối phổ biến trong ngành mỹ phẩm chăm sóc da, chăm sóc tóc nhờ vào đặc tính dưỡng ẩm và tái sinh rất mạnh mẽ của nó.
Những lợi ích từ trái cây giàu dinh dưỡng mang lại đều có thể được tìm thấy trong dầu bơ. Chính vì thế, dầu bơ rất được ưa chuộng dùng trong chăm sóc da, tóc và nâng cao sức khỏe toàn diện. Các dưỡng chất có trong quả bơ, chẳng hạn như axit oleic có khả năng dưỡng ẩm cho da cũng như giúp làm giảm các dấu hiệu lão hóa. Đồng thời, axit oleic còn chữa trị gàu, mụn trứng cá, bệnh vẩy nến.
Ngoài axit oleic, vitamin E có trong avocado oil mang lại hiệu quả ức chế tia UV; carotenoids giúp giảm đau và viêm, cải thiện sức khỏe của mắt, ngăn ngừa và điều trị ung thư.
Những người muốn giảm cân hoặc có cholesterol cao cũng thường xuyên dùng avocado oil để sớm đạt được hiệu quả mong muốn.
Điều chế sản xuất avocado oil
Avocado oil được chiết xuất từ thịt trái bơ bằng phương pháp ép lạnh. Avocado oil được dùng tốt nhất khi ở dạng tinh khiết.
Microcrystalline cellulose là gì?
Microcrystalline cellulose có nhiều tên gọi khác nhau như cellulose vi tinh thể hay MMC, nó có nguồn gốc từ gỗ hoặc các bộ phận thực vật cứng khác nhừ xử lý cẩn thận bằng axit vô cơ. Microcrystalline cellulose không phải được tạo ra tư các pallet công nghiệp tái chế nhé.
Microcrystalline cellulose có nguồn gốc từ thực vật nên rất thân thiện với môi trường. Tá dược này có đặc điểm không màu, không mùi, nó không thể hòa tan trong nước mà chảy tự do nên rất khó nhận ra nó.
Đối với các sản phẩm như dược phẩm, thực phẩm hay mỹ phẩm, hoạt chất microcrystalline cellulose là một trong những chất phụ gia rất có giá trị. Có nguồn gốc từ thực vật nên Microcrystalline cellulose an toàn đối với sức khỏe người dùng, Microcrystalline cellulose đã được đo lường, kết quả cho thấy định tính phù hợp với mục đích sử dụng.
Điều chế sản xuất Microcrystalline cellulose
Điều chế microcrystalline cellulose từ nguyên liệu bông: Điều chế MCC từ bông với lượng bông nguyên liệu có hàm lượng a-xenlulô = 94% là 250g; nồng độ axit HCl = 10%; nhiệt độ phản ứng 105oC; thời gian thủy phân bằng 30 phút. Hiệu suất đạt 89,36%, sản phẩm MCC có DP = 217; tỷ trọng khối 0,36 - 0,38g/ml.
Điều chế MCC từ nguyên liệu bột giấy: Điều chế MCC từ bột giấy Indonesia, bột giấy Bãi Bằng sau khi đã tách-xenlulo và pentosan từ bột giấy thương phẩm trong dung dịch kiềm theo phương pháp của Hyatt với điều kiện thực nghiệm như sau: Giai đoạn xử lý kiềm, phân tán 500 gam bột giấy vào 4,5 lít nước cất bằng máy khuấy cơ học, trong bình phản ứng 3 cổ có lắp sinh hàn hồi lưu. Bổ sung 22,5gam NaOH vào hỗn hợp phản ứng, nâng nhiệt độ khối hỗn hợp phản ứng lên 60oC. Duy trì ở nhiệt độ này trong 2 giờ, lọc, rửa đến trung tính. Sấy khô ở 105 oC trong 10 giờ, thu được 375 gam xenlulo (75%). Phân tích hàm lượng a-xenlulo bằng phương pháp hòa tan xenlulo trong dung dịch KOH 17,5 %, hàm lượng a-xenlulo của mẫu thu được là 98%.
Giai đoạn thủy phân điều chế MCC: Bột giấy thu được ở giai đoạn xử lý kiềm: 250 gam; Các điều kiện phản ứng như đã nêu ở trên, thu được 202,5 gam (81% tính theo xenlulo đã xử lý kiềm). DP = 198. Hiệu suất MCC tính theo bột giấy thương phẩm là 60,75%. Quy trình thực nghiệm tương tự như trên, hiệu suất MCC thu được là 80,4%, 60,0% tính theo bột giấy thương phẩm. DP của sản phẩm là 202,. tỷ trọng khối là 0,34 - 0,36 g/ml.
Cơ chế hoạt động Microcrystalline cellulose
Microcrystalline cellulase "phá vỡ" phân tử cellulose thành các monosaccharide như beta-glucose hay thành các polysaccharide ngắn hơn và oligosaccharide. Sự phân hủy cellulose có tầm quan trọng đáng kể về kinh tế. Từ thành phần chính của thực vật tạo ra sản phẩm để tiêu thụ và sử dụng trong các phản ứng hóa học. Phản ứng liên quan đến sự thủy phân của các liên kết 1,4-beta-D-glycosidic trong cellulose, hemicellulose, lichenin và beta-D-glucan trong ngũ cốc. Trong đó, các phân tử cellulose liên kết chặt chẽ với nhau. Sự phân giải cellulose là tương đối khó khăn so với sự phân hủy của các polysaccharide khác.
Động vật có vú hầu hết có khả năng hạn chế tiêu hóa các chất xơ như cellulose. Một số loài động vật như bò và cừu và động vật có dạ dày đơn như ngựa, cellulase có thể được tạo ra bởi vi khuẩn cộng sinh.
Một số loại cellulase khác nhau có cấu trúc và cơ chế khác nhau. Từ đồng nghĩa, dẫn xuất và các enzym cụ thể liên quan đến tên "cellulase" bao gồm endo-1,4-beta-D-glucanase (beta-1,4-glucanase, beta-1,4-endoglucan hydrolase, endoglucanase D, 1,4 - (1,3,1,4) -eta-D-glucan 4-glucanohydrolase), carboxymethyl cellulase (CMCase), avicelase, celludextrinase, cellulase A, cellulosin AP, cellulase kiềm, cellulase A 3, 9.5 cellulase và pancellase SS. Enzym mà chia lignin làm đôi khi cũng được gọi là cellulase. Ngày nay không được chấp nhận vì cách sử dụng này đã lỗi thời; chúng là các enzyme biến đổi lignin, không phải cellulose.
Caprylic acid là gì?
Caprylic acid là một axit béo có ở sữa mẹ, dầu dừa và sữa bò. Caprylic acid (Axit caprylic) có khả năng kháng khuẩn, kháng nấm, vi-rút và chống viêm. Thành phần còn là một loại axit béo bão hòa có lợi. Caprylic acid có thể ngăn ngừa nhiễm trùng đường tiết niệu, nấm candida, nhiễm trùng bàng quang, nhiễm trùng miệng và và viêm nướu kể cả các bệnh lây truyền qua đường tình dục. Thời gian gần đây, hoạt chất đã được biết đến rộng rãi nhờ tác dụng kháng nấm. Một công dụng khác cũng đặc biệt của thành phần là giúp cho cơ quan tiêu hóa và sinh sản hoạt động tốt.
Caprylic có nguồn gốc từ dầu dừa và glycerin. Thành phần caprylic/capric triglyceride chứa lượng axit béo cao giúp da giữ ẩm, củng cố lượng nước trong da làm cho da trở nên mềm mại. Caprica/capric triglyceride cũng có tính năng như một chất tạo độ trượt cho mỹ phẩm. Hoạt chất thường được kết hợp với dimethicone PEG/PPG để tạo ra công thức nhũ tương như ý muốn, cho phép các sản phẩm dễ bôi lên da, tạo cảm giác da mượt hơn.
Điều chế sản xuất
Axit caprylic (axit octanoic, C8: 0) thuộc nhóm axit béo no chuỗi trung bình, chất này bắt nguồn từ các sản phẩm sữa, dầu dừa… có nguồn gốc tự nhiên. Đặc tính vật lý và hóa học của MCFAs chuyển hóa khác biệt với đặc tính của axit béo bão hòa chuỗi dài (LCFAs ≥ 12 cacbon). Trong những nghiên cứu nhiều năm gần đây cho thấy hoạt chất còn có tác dụng sinh lý giúp chế độ ăn kiếng được thuận lợi hơn.
Gần đây, axit caprylic, octanoylate ghrelin, hormone peptide được biết đến có tác dụng gây orexigenic. Thông qua liên kết cộng hóa trị của hoạt chất với peptit ghrelin, axit caprylic thể hiện một vai trò mới nổi và cụ thể trong việc điều chỉnh các chức năng sinh lý được điều chỉnh bởi ghrelin được octanoyl hóa. Trong chế độ ăn uống, thành phần axit caprylic người ta còn nghi ngờ là có khả năng cung cấp enzyme ghrelin O-acyltransferase (GOAT) với đồng cơ chất octanoyl-CoA một quá trình cần thiết của việc biến đổi acyl của ghrelin.
Các nghiên cứu gần đây cho thấy rằng việc giảm mức ghrelin được octanoyl hóa trong tuần hoàn thông qua việc ức chế hoạt động GOAT, hoặc đơn giản bằng cách điều chỉnh chất nền C8: 0, có thể tạo thành một chiến lược điều trị chống lại bệnh béo phì. Cả axit caprylic trong chế độ ăn uống và hoạt động GOAT có thể thực sự quan trọng để điều chỉnh nồng độ và chức năng ghrelin được octanoyl hóa.
Đánh giá này nêu bật những phát hiện gần đây trong lĩnh vực dinh dưỡng.,hoặc đơn giản bằng cách điều chỉnh sự sẵn có của chất nền C8: 0. Hoạt chất này có thể tạo thành một chiến lược điều trị bệnh béo phì. Cả axit caprylic trong chế độ ăn uống và hoạt động GOAT thực sự quan trọng để điều chỉnh nồng độ và chức năng ghrelin được octanoyl hóa.
Cơ chế hoạt động
Axit caprylic, hoạt động như một hợp chất ketogenic và được cho là có khả năng vượt qua sự suy giảm chuyển hóa năng lượng. Cơ chế này đã được quan sát thấy ở bệnh nhân AD (Thaipisuttikul và Galvin vào năm 2012). Bệnh nhân AD dường như bị giảm sử dụng glucose trong thần kinh trung ương, đặc biệt là người mang alen ApoE4 (Ohnuma và cộng sự, 2016). Chế độ ăn ketogenic đã được chứng minh là có thể cải thiện nhận thức biểu hiện ở bệnh nhân AD và những phát hiện này là cơ sở cho sự phát triển của thực phẩm y tế ketogenic.
Boron Nitride là gì?
Boron Nitride là hợp chất không quá xa lạ với phái đẹp bởi loại hợp chất tạo hiệu ứng chiếu sáng này là một thành phần được sử dụng rộng rãi trong ngành công nghiệp mỹ phẩm. Ở điều kiện thường, Boron Nitride ở dạng bột màu trắng giống như bột talc, có thể phản chiếu lấp lánh dưới đèn màu.
Boron Nitride ở dạng bột màu trắng giống như bột talc
Boron Nitride xuất hiện trong các loại sản phẩm như kem nền, phấn phủ, son môi,… nhờ khả năng cải thiện độ láng mịn cho làn da. Đặc điểm nổi trội của Boron Nitride là khả năng liên kết các phân tử nhỏ giúp tăng cường độ bám dính trên bề mặt của các loại mỹ phẩm, giữ cho son môi, phấn phủ, kem nền được giữ lâu hơn và mang lại cảm giác mịn màng, căng bóng cho làn da. Đối với son môi, Boron Nitride là thành phần “vàng” bởi chúng có thể giúp lớp son được phân tán đều trên bề mặt môi mà không tạo cảm giác nhờn, rít.
Boron Nitride - thành phần quen thuộc trong nhiều loại mỹ phẩm
Điều chế sản xuất Boron Nitride
Trong phòng thí nghiệm, Boron Nitride được điều chế từ phản ứng hóa học giữa Boron trioxit (B2O3) hoặc Axit boric (H3BO3) với Amoniac (NH3) hoặc Urê (CO (NH2) 2) trong môi trường Nitơ:
B2O3 + 2NH3 → 2BN + 3 H2O (T =900°C).
B(OH)3 + NH3 → BN + 3H2O (T =900°C).
B2O3 + CO(NH2)2 → 2BN + CO2 + 2H2O (T >1000°C).
B2O3 + 3CaB6 + 10N2 → 20BN + 3CaO (T >1500°C).
Cơ chế hoạt động của Boron Nitride
Boron Nitride tồn tại ở nhiều dạng khác nhau, tương tự như dạng cấu trúc của Carbon. Hợp chất này hoạt động như một chất khoáng trong mỹ phẩm cải thiện khả năng bám dính của mỹ phẩm trên da.
Sản phẩm liên quan